

Radiometric Calibration of the AWiFS Using Vicarious Calibration Techniques

Mary Pagnutti and Kara Holekamp

Science Systems and Applications, Inc. John C. Stennis Space Center, MS 39529

JACIE Civil Commercial Imagery Evaluation Workshop Fairfax, VA, USA March 21, 2007

AWiFS – Advanced Wide Field Sensor

NASA

- Onboard IRS-P6 RESOURCESAT-1 satellite
 - Launched October 2003
 - Design life of 5 years
- Pushbroom architecture
- Four bands in the VNIR-SWIR spectral region
 - Green (0.52–0.59 μm), Red (0.62–0.68 μm), NIR (0.77–0.86 μm), SWIR (1.55–1.70 μm)
- Spatial resolution: 56 m (near nadir), 70 m (near edge)
- Radiometric resolution: 10 bit
- Swath: 740 km
- Repeat time: 5 days

The AWiFS camera is split into two separate electro-optic modules (AWiFS-A and AWiFS-B) tilted by 11.94 degrees with respect to nadir

Source: http://www.spaceimaging.com/products/irs/RESOURCESAT/products.htm

Landsat 7 – AWiFS Comparison

Stennis Space Center

Number of Samples

- Landsat 7: ~144 points per 40-acre field
- AWiFS: ~36 points per 40-acre field

Repeat Coverage

- Landsat 7: 16 days
- AWiFS: 5 days

Swath

- Landsat 7: 185 km
- AWiFS: 737 km

Bands

- Landsat 7: 7 bands
- AWiFS: 4 bands (no blue, 2.2 μm, thermal)

Objective

- Perform radiometric vicarious calibrations of imagery and compare with vendor-provided calibration coefficients
- Vicarious reflectance-based approach used
 - Ground truth collection
 - Characterize target reflectance at time of satellite overpass
 - Characterize atmosphere at time of satellite overpass
 - Use MODTRAN radiative transport code to predict at-sensor radiance
 - Compare predicted at-sensor radiance to actual radiance acquired by sensor

At-Sensor Radiance Prediction Method Stennis Space Center

Five selected targets of opportunity in and around Stennis Space Center are hundreds of meters across:

- Two gravel pit sand sites
- Two large monoculture fields
- Large tall grass field

Clear Cut field, SSC, MS

Diamond Gravel, Wiggins, MS

Includes material © DigitalGlobe, Inc.

Ground Reflectance Measurements

Stennis Space Center

- ASD FieldSpec® FR spectroradiometer measurements of Spectralon® panels and several target areas were taken
 - ~100 m x 200 m area of a rye grass field
 - ~100 m x 100 m area of two sand sites
 - ~100 m x 200 m area of a tall grass field
- Measurements were taken along transects aligned with the sensor azimuth
 - Measurements were taken at satellite elevation angles to account for BRDF effects
 - All measurements were taken while walking to increase spatial averaging
 - Periodic Spectralon panel measurements were taken
- All data were acquired within 30 minutes of satellite overpass

Stennis Space Center Stennis Space S

NASA

of ASD FieldSpec Spectroradiometers

- NASA SSC maintains four ASD spectroradiometers
 - Laboratory transfer radiometers
 - Ground surface reflectance and atmospheric measurements for field collection activities
- Radiometric Calibration
 - NIST-calibrated integrating sphere serves as source with known spectral radiance
- Spectral Calibration
 - Laser and pen lamp illumination of integrating sphere
- Environmental Testing
 - Temperature stability tests performed in environmental chamber

Atmospheric Measurements

Stennis Space Center

NASA

- Direct solar irradiance data for visibility estimation collected from early morning through solar noon with automated solar radiometers (optical depth/transmission)
- Total and diffuse solar irradiance for aerosol scattering estimation collected from early morning through solar noon with multi-filter rotating shadowband radiometers (diffuse-to-global ratio)
- Other atmospheric parameters, such as total column ozone and water vapor, determined using MODIS and OMI satellite data

Novel Hyperspectral Sun Photometer Stennis Space Center

- Direct and diffuse irradiance derived from ASD radiance measurements of a characterized 99% reflectance Spectralon panel
- NIST-traceable calibration performed in laboratory
 - Instrument calibration independent of Langley regression
 - Field measurements required only at the time of overpass
- Used to measure
 - Optical depth/transmission
 - Diffuse-to-global ratio
- Technique uses equipment already in the field

Novel Hyperspectral Sun Photometer Setup

Visibility Estimation

Aerosol Scattering

The asymmetry factor for the aerosol scattering phase function is estimated by comparing MODTRAN output diffuse-to-global ratio values to MFRSR measured diffuse-to-global ratio values

Data Acquisitions

Date	Camera	Overpass Time (UTC)	Satellite Elevation	Satellite Azimuth	Sun Elevation	Sun Azimuth
Jan 7, 2006	Α	16:32	74.9 deg	103 deg	32.6 deg	155.0 deg
Jan 25, 2006	В	16:57	66.5 deg	282 deg	37.4 deg	158.3 deg
Mar 15, 2006	Α	16:38	81.2 deg	103 deg	51.2 deg	143.7 deg

Green Band Calibration Summary

Red Band Calibration Summary

Stennis Space Center

SWIR Band Calibration Summary

Stennis Space Center Radiometric Calibration Coefficients

	Green	Red	NIR	SWIR
NASA Estimate 2006 Cal Coeff (W/m² sr μm DN) Offset	0.59 ± 0.02	0.49 ± 0.01	0.32 ± 0.01	0.063 ± 0.003
	-6.06 ± 4.08	-1.55 ± 1.94	-2.38 ± 1.70	-2.88 ± 1.12
NASA Estimate 2005 Cal Coeff (W/m² sr μm DN) Offset	0.60 ± 0.02	0.46 ± 0.01	0.31 ± 0.02	0.056 ± 0.004
	-5.49 ± 5.36	2.60 ± 3.89	-3.11 ± 6.69	-2.82 ± 2.15
AWiFS Provided Cal Coeff (W/m² sr μm DN) Offset	0.51	0.40	0.28	0.045
	0	0	0	0

Stennis Space Center

Green Band Calibration Summary

Red Band Calibration Summary

NIR Band Calibration Summary

Stennis Space Center

Stennis Space Center

SWIR Band Calibration Summary

Stennis Space Center

Initial Radiometric Calibration Coefficients (Zero-Offset)

	NASA 2006	NASA 2005	AWiFS	% Difference
Band	Estimate	Estimate	Provided	(AWiFS vs.
	[W/m² sr µm DN]	[W/m² sr µm DN]	[W/m² sr µm DN]	NASA 2006)
Green	0.56 ± 0.05	0.58 ± 0.06	0.51	8.9%
Red	0.48 ± 0.03	0.47 ± 0.05	0.40	16.7%
NIR	0.31 ± 0.01	0.30 ± 0.02	0.28	9.7%
SWIR	0.057 ± 0.005	0.052 ± 0.005	0.045	21.1%

Percent difference is calculated by (1 – AWiFS/NASA Mean)

- The AWiFS calibration coefficients agree reasonably well with the NASA estimate
 - Limited characterization points in 2006
 - Red and SWIR band percent differences will be reviewed
- The AWiFS radiometric calibration coefficients appear stable over a 1-year period (March 2005–March 2006)
- The NASA team will continue to assess AWiFS radiometric accuracy

National Aeronautics and Space Administration

Thomas Stanley

Science Systems and Applications, Inc.

Slawomir Blonski

Kelly Knowlton

Robert E. Ryan

Brennan Grant

Kenton Ross

Steve Tate

Computer Sciences Corporation

Ronald Vaughan

